

In quantitative terms, the related ecological exchanges between the selected human–environmental systems of air, water, food and fibre (land), and energy for the community are modelled and measured to establish indicators for sustainability (Figure 12.6). For each ecological interchange, the four left-hand rows in the bar graph illustrate the relative quantities of the following:

- 1. The existing use of each resource
- 2. The non-renewable and renewable supply of each resource from the site
- 3–4. The proposed sustainable use and estimated per cent of conservation required to place each human–environmental system in balance

The method demonstrates the interaction of each system and that 40–70% conservation is required to place each variable and its human–environmental exchange in a sustainable balance. Also, the method conveys surprise that air represented by the carbon dioxide to oxygen (CO₂ to O₂) exchange achieved through photosynthesis is one of the most overlooked yet fundamentally critical of all the systems. Without balancing our CO₂ to O₂ cycle, global warming will continue to increase.

Figure 12.5 Pullman's ecological systems diagram.

Resources and energy variables

Modelling	sustainability
-----------	----------------

	Renewable mergies	$O_2 \rightarrow CO_2$	E: Existing
Air		0 ₂ ←CO ₂	E 1,000,000 tree equivalents
One can only live 2–3 minutes	Food-fibre	$O_2 \rightarrow CO_2$	Conservation
without air	Grey, brown Renewable resources	O₂←CO₂	P: Proposed (Need to plant 4,000,000 trees)
	Renewable energies	H ₂ O use	E
Water	20 mg	Input	E (winter/spring)
One can only	Food-fibre	Input	E /Impondment (summer/fall)
live 2–3 days without water	Water Gray, brown Renewable resources	Proposed	P Conservation
Food and	Renewable mergies	F/F imported	E (95% imported)
fibre		Local	E (5% locally grown) – high export of peas, lentils and wheat
One can only live 2–3 months	Food-fibre	Imported	P 40% imported
without food	Graph brown Renewable resources	Local	P 60% locally grown
	Renewible chergies	Imported	E Non-renewables
Energy	20 mg	Local	E Renewables (hydro 20%, solar 5%) Residential Com.
The primary	Food-fibre	Uses	E Transportation 47% Industrial 29% 15% 9%
exchange agent in ecological systems	Water Grew, brown Renewable resources	Proposed	P T Conservation I Conservation R C C C
Household	Renewable mergins	Transport	E Transportation 61% of household use of energy
energy		Proposed	P Conservation
Shifting from	Food-libre Great	HVAC + WH	E 31% 9% of household energy use is from appliances
non-renewables to renewable resources	Brown Arligon Renewable resources	Proposed	P:Conservation 1999 efficiency standards conserve 40%

Figure 12.6

Pullman's modelling and analysis of its human-environmental systems. (HVAC = Heating Ventilating and Air-Conditioning; WH = Water Heating.)

The study also demonstrates the integrated use of these modelling methods and sustainable design strategies in the revitalization of this existing community, enhancing its human, economic, social, and environmental quality. A useful ecological organizing technique, 'levels-of-integration,' is used carefully to reanimate Pullman and balance its fundamental human–environmental systems. A summary of these integrated levels of design regeneration (region, city, neighbourhoods, site/clusters, and buildings) is illustrated in the following annotated outline.

A Regional level strategies

Regional level strategies provided a critical opportunity to balance selected human–environmental interchanges. The existing urban